
General Introduction 

Many physical processes can´t be described by equations whose solutions are 

straightforward derived from analytical methods. In fact most real-world 

processes are only descriptible by or modeled through a complex set of partial 

differential equations with many variables which often are themselves coupled. 

Usually one would for instance investigate the time-space evolution of a 

process (i.e. the concentration profile of a flowing chemical solution) in a given 

physical setting (such as a radial symmetrical conduct) under a given set of 

initial conditions (i.e. a concentration value at a specific time and place under a 

given pressure gradient). From this simple, somehow contrived example, one 

realizes the complexity arising from portraying the process through a system of 

differential equations and then solving it. It is quite obvious, the solution to this 

problem isn´t straightforward derivable from analytical methods. To tackle this 

problem one should turn to numerical methods for an approximate 

mathematical solution. Fortunately an extensive literature body has been 

worked out on the theory of numerical methods over these past two hundred 

years, and thanks to today elaborated programming languages as well available 

computing horsepower, tremendous improvements have been made 

pertaining to the implementation of corresponding algorithms to achieve a 

fine-tuned error-margin of their set of solutions. Furthermore through various 

softwares one can even picture the computed set resulting from the 

differential system. 

However portraying a process through a highly coupled partial differential 

equations system and then numerically solving it isn´t a trivial undertaking; it 

requires skills, which this Manual is about. Moreover the gained numerical 

solutions themselves aren´t worth if they fail to achieve consistency, that is if 

they fail to comply with physical requirements. Therefore thought should be 

given on deep understanding of the basic physical laws driving the process and 

particularly their logical implications, the validating criterion against the 

computed data. From this it becomes obvious that the causes of a non-

consistent computed data are quite multiple: it may stem from an incorrect 

formulation or even misconception of the differential system, an inadequate or 

error-ridden numerical method, a mistake in the code design, a faulty code 



procedure, a deficient programming or even an error in displaying the 

computed data. 

Why engage in such error-prone task? 

Modeling processes is in certain cases often the only way to get insights into 

the evolution of a given phenomenon because of the absence of any practical 

experience or experimental set-up to investigate it: we may call into mind 

weather forecasting, climate change and in other fields we may mention 

simulating the actions´ index fluctuations in a bourse. 

Therefore mastering the subject is quite worth the effort. 

Let us now for illustrative purposes consider again the said example of a flow to 

which an additive is sprayed in upon entering a given region of a tube and we 

are interested in knowing the additive´s concentration profile downwards:  to 

simplify we assume the tube is of constant section, the flow laminar, i.e. non-

turbulent, the velocity field being constant. We further take advantage of the 

radial symmetry, assuming the fluid being isotropic enables us to state that the 

concentration profile is radial-symmetrically distributed at any time, because 

the sole process superposing to the isotropic diffusion is advection due to the 

fluid velocity field itself. Moreover the flow velocity is minimal at the inner wall, 

due to friction and maximal at the center on the tube axis; because of the 

radial symmetry it will assume a parabolic shape and layered as we shall later 

demonstrate. This allows substituting the flow description in the tube with a 

simpler flow description in a 2D geometry as shown in Figure1. 
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                       Figure1: 2D Representation of a laminar flow in a pipe 



As said the diffusion accounting to the distribution of the additive takes place, 

even in the absence of fluid motion. Since we assume the fluid as isotropic, the 

diffusion will be constant and uniform. Therefore two independent processes 

shape the concentration profile: the additive´s diffusion and the fluid (motion 

or) advection. From this we define a parameter p expressing the relative 

contribution of these two processes. At this point it is particularly important to 

keep in mind the convenience of using dimensionless or reduced data, by 

forming the quotient from these two processes which then will free us from 

having to constantly specifying the physical units we´re working with whilst 

further enabling us to displaying the relative strength of the advection process 

over the diffusion, thus picturing a particular dominant tendency by a simple 

number. Therefore the said parameter p may vary between ] 0, a [ in our actual 

case; and is known in the literature as the Péclet number. The value a, a 

measure of the advection strength has a certain limit, because of the  stated 

laminar case of the flow as we shall see in the next section explaining in detail 

the Reynolds number, and the Péclet number. 

General observations and choice of the key-parameters 

Dimensionless numbers play an important role in the process of reformulating 

the partial differential equations system: the incorporation of key-parameters 

and specifically dimensionless numbers enable for instance to predict or 

monitor the occurrence of a definite flow regime in a given range of Reynolds 

values; on the other hand key-parameters enable for instance fine-tuning upon 

conditional occurrence the resolution level to picture a flow regime transition. 

Another important point worth mention is the role of key-parameters and 

dimensionless numbers in dynamic similarity enabling to replicate a model 

from lab-scale to real world applications or when translating a numerical model 

into an experiment. In those situations, detail-knowledge pertaining to the 

formulation of parameters, the scope of their use as well their re-scaling 

context will prove very helpful and should be consigned both in the 

experimental protocol and numerical Model documentation. 

A perusal of today literature on hydrodynamics with thermodynamical 

processes shows there are currently about half hundred standard 

dimensionless numbers (and there will be more complex ones as we gain more 



knowledge on complex flow physics and more sophisticated mathematical 

tools become available). Among these dimensionless numbers, the Reynolds 

number (abbreviated Re) and the Péclet number (Pe) are the most basic as they 

describe a given flow regime (laminar or turbulent) occurrence and the 

fundamentals of transport processes -pertaining to energy as well mass- in flow 

physics, respectively. Accordingly there are for instance Pe for mass transport 

and for energy transport. 

Let us now examine Pe for mass transport defined as the ratio of the 

advection´s rate to the diffusion’s rate: 

    
  

 
 ;        ,  where 

   is a representative (or reference) length, 

   a reference velocity, 

 and   the mass diffusion´s coefficient. 

The reference length   will depend on the geometry where the flow is being 

described.   in the case of a pressure gradient driven laminar flow through a 

pipe could be taken as the flow velocity along the tube axis. Moreover it could 

be assimilated to the maximum velocity under a given pressure gradient as 

shown in Figure1; and ( ,  ) a region of the tube where we´re interested in 

knowing the concentration profile;   being the tube diameter – in our 2D 

geometry the vertical distance between inner walls- und   the region´s length 

in the flow direction along the tube axis. 

The Reynolds number Re is defined as the ratio of inertial forces to viscous 

forces. In the simple case of a flow through a pipe (Figure1), it is given as 

    
   

 
 

  

 
 ;         ,  where 

 ρ  is the fluid density, 

   the mean fluid velocity, 

    a reference length as similarly defined in the case of Pe, 

 μ  the dynamic fluid viscosity (Pa.s), 

   the kinematic viscosity (m2 /s). 



Turbulence occurs at high Re where dominant inertial forces induce instabilities 

leading to chaotic flow patterns, while low Re reflect the predominance of 

viscous forces which tend to streamline the velocity field. Therefore a laminar 

flow with diffusion process will have a Pe under a certain value determined by 

the maximum velocity as just stated at the end of the preceding section; the 

advection may indeed outweigh the diffusion process several orders of 

magnitude but the maximum velocity should lay below a critical value to keep 

the flow within the laminar regime limit: i.e. low Re typically below 2000 for a 

flow in a tube, according to standard experiments (see Ref [1]). 

Having introduced the basic concepts, we want now to illustrate their 

application; to that effect we´ll consider another flow configuration requiring a 

reformulation of the given Pe in     to account for additional information: let 

us consider the case of hydrodynamic lubrication, where a fluid is squeezed 

between rotating co-axial cylinders c1 and c2 of opposite angular velocities: the 

fluid herein is subjected to shear stresses in such a way fluid layers adjacent to 

a given cylinder will be moved by shear forces in its own rotation direction. 

Additionally if their linear velocities are of equal absolute value, i.e.  ⃗1= - ⃗2 ; a 

shear gradient will progressively build up in such way half of the fluid will be 

 pulled in one rotating direction and the other half by the cylinder 

rotating in the opposite direction. Since the shear forces, from geometric 

viewpoint, depend only on the linear velocities the system is then equivalent to 

a simpler shear flow between two parallel plates moving with the same velocity 

but in opposite directions, as shown in Figure2:     
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Figure2: shear flow between two parallel plates. 



Let us further consider an additive, such as a dispersant injected (see      ) 

into the fluid under these conditions and we are again interested in knowing 

the additive´s concentration profile: due to the symmetry we can limit 

ourselves to investigating the profile only in the (L, e) region. We therefore 

model the additive´s distribution through the following equation (see 

Mathematical Annex): 

   ⃗  ⃗⃗         
  

  
 ;         ,  where 

 γ  is the constant shear rate, 

  ⃗   a variable running between 0 and e, the film thickness, 

  ⃗⃗   particles density gradient, 

   the diffusion constant, 

      the Laplace operator on particles density, 

 
  

  
  the local variation of the particles density. 

      

Oil additives are extensively used to maintain high oil viscosity values between surfaces in relative 

motion. To that effect VII (viscosity index improvers) consisting of larges molecule of chemical 

compounds are added. However due to service conditions those molecules are torn apart (see 

Ref.[2]) following shear stresses, causing the oil to thin down and possibly leak out; the torn apart VI 

Improvers then become contaminants which cause sludge if not removed. Under such conditions oil 

dispersants may be added to keep the contaminants in suspension (thus preventing sludge) until 

they are removed (within a reasonable time limit as lowered-viscosity oil film may induce detrimental 

heat surges between moving parts). I am inclined to believe this management policy may be 

particularly advantageous for critical industrial machines, such as isotopes separating centrifuges 

where up-time performance and running costs control are prime targets. 

Before proceeding, we want to introduce some elements of dimensional 

analysis; to that effect we come back to the flow problem of the preceding 

section, where we stated we´ll prove the fully developed flow velocity field in 

the tube has a parabolic shape with maximum value at the center on the tube 

axis: let´s consider the system variables ∇ P, , μ, and , where 

 ∇ P is the flow pressure gradient, 

    the velocity vector field,  

 μ  the dynamic viscosity, and 



   the variable running between 0 and d  the distance between the 

plates as shown in Fig1. 

We first construct the system-matrix SM whose columns consist of the 

variables and whose rows of the fundamental physical dimensions, namely the 

mass, time and length. Next we calculate the matrix K such that the product 

SM.K yields the null matrix. In linear algebra K is called the kernel of the 

system-matrix. The difference between the number of variables and the 

number of the fundamental physical dimensions involved represents the 

number of dimensionless groups, as stated by the Buckingham Pi theorem, 

(which is derived from the homogeneity requirements of equations with 

respect to the physical dimensions involved). In our case we’ve:  

SM = {
                                            
                                   
                               

}; in our convention we´ve represented the variable y as 

the fourth matrix-column expressed  in fundamental units of (mass, length, time)  as {
 
 
 
}  and 

similarly    [ML-2T-2]  as the matrix-column {
 
  
  

}. 

 We therefore have 4-3= 1 Pi dimensionless Group and written as   

             ; the exponents are the k-elements of the kernel matrix. 

 

 We determine the matrix K such that SM.K= 0 i.e. 

 

{
           

         
     

 

Now solving the system with respect to one variable, say  , because we want 

to establish the relationship between   and the other variables yields: 

{
     
   

      
 

That is                ; and since the constant   can be expressed in 

power of   as    to make the equation homogeneous with respect to  , we get 

the simpler expression   



   
  

 
   .          

Through the equation    
  

 
   we´ve demonstrated that V is parabolic 

respectively to the variable  , running from   to  , the distance between the 

walls in our 2D-geometry. Now we show that   is symmetric around    , the 

tube axis, i.e. half-way between the walls: we first take note that   is null at 

both walls, because they are stationary; we therefore introduce two variables 

reflecting this symmetry, namely +h/2 at      and -h/2 at     ; and further 

introduce the coordinate’s transformation      Y2-(h/2)2: the derivative 
  

  
 = 

2C
   

 
Y  is null at 0, half-way between the plates and negative at -h/2, namely     

-C
   

 
h and from Y=0 positive and has growing values until h/2 ; namely C

   

 
h, 

the opposite value at –h/2. Therefore the flow velocity field V is symmetric and 

layered around the tube axis (or half-way between the walls in our 2D-

geometry). 

 Correction 

The derivative 
  

  
 = 2C

   

 
  is indeed null at     and therefore any value λ yielding  

  
   

 
λ  will have its opposite derivative value    

   

 
λ   at its equidistant opposite 

 λ   no  j         . Therefore the profile is symmetric and layered around      

However the equation     doesn´t give justice to the fact                 , due 

to friction which cause the flow layers in close contact with the walls to halt. This 

shortcoming stems from the fact that we did not integrate in the formulation of our SM  

this additional boundary conditions requirement. It should be noted, this requirement is 

a physical one, not the result of any mathematical constraint. We therefore introduce a 

further dimensionless g o p     
 

 
  ; and  since  any dimensionless group can be  re-

expressed as a  combination of the remaining group-subset, we write         , i.e. 
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) . We therefore rewrite     as 

   
  

 

  

    
 

 
 ; (i.e. from a parabola having the expression ax2 ,  to ax2 +bx after 

substitution). The coefficient    will be determined by the boundary condition 

                          giving  

    
  

 
. Therefore  
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Similarly we first apply Dimensional Analysis to equation (3) to find out possible 

dimensionless groups: our variables are γ,D,z; where 0<z <y (see Figure2)  is 

used to define a region z2 having a relaxation- ime τ  We f   he  in  od ce 

the element of viscosity μ to account for realer situations: the system-matrix  

is then 

SM = {
                                           
                                       

                                      
}; solving SM.K = 0  yields the kernel: 

K = {
   
    
     

}    for the Pi Group Π = γa D-a z 2a μ0   gives C =
   

 
; which is the 

ratio of the shear rate advection to the diffusion rate, i.e. the Pe for our flow 

configuration. Therefore      
   

 
 .            

 Substituting into     and introducing h2 as the quadratic grid mesh unit (see 

legend Figure3) in the discretized (x, y) Plane  gives                                                                                                                                                                

 
  

  
         

  

   
 
  

    
  ;           ,  where 
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Figure3: Discretization of the (MN) Plane with 0 < i < N  and  0< j < M on a quadratic grid of 

mesh unit h2 , i = j = h.  

     
 

 
 ;   and        a resolution-level factor which shall be explained in 

the  section “Introduction of additional parameters as appropriate”. 

     the dimensionless gradient         ; and similarly 

            the dimensionless divergence of the particles density 

gradient: 

     ∑            
   ;          

where the     are the 4 grid points n(         around n(i, j) as shown 

in Figure3.  A demonstration of the equation      as well the derivation 

of the expression of the dimensionless gradient will be presented in the 

Mathematical Annex. 

     diffusion time expressed as function of h and D:      
  

 
       

      a relaxation time over the region (MN) following a given shear rate 

application: 

         (MN) ;                     

 
  

   
 the dimensionless local particles density variation with respect to 

  

    
.  

In the C-Program implementing the numerical approximation, the 

expression  
  

   
 
  

    
  is substituted by 

               

   
 ; the superscript k 

denotes the     iteration and RES  a variable expressing the resolution-

level in function of the shear rate strength γ  (expressed in terms of the 

Pe), the reference time       and the relaxation time    . 

The section “Introduction of additional parameters as appropriate” will give 
ample details on the motivation for introducing the variable RES alongside its 
arguments            and Pe. 
 

  


